The stability of cytadherence proteins in Mycoplasma pneumoniae requires activity of the protein kinase PrkC.
نویسندگان
چکیده
Mycoplasma pneumoniae belongs to the mollicutes, a group of bacteria that have strongly reduced genomes but that are nevertheless capable of independent life. With only three transcription factors, the regulatory features of these bacteria are very limited. Thus, posttranslational regulation might be important for M. pneumoniae. In addition to the highly specific HPr kinase, the M. pneumoniae prkC gene encodes the serine/threonine protein kinase C. In order to study the function(s) of this kinase, we isolated an M. pneumoniae mutant affected in PrkC. This mutation resulted in nonadherent growth and loss of cytotoxicity. Examination of the phosphorylation profile of the prkC mutant suggested that phosphorylation of cytadherence proteins was affected by the loss of this kinase. In contrast, inactivation of the prpC gene affecting the protein phosphatase that antagonizes PrkC-dependent phosphorylation resulted in more intensive phosphorylation of the cytadherence proteins HMW1 and HMW3 of the major adhesin P1 and of the surface protein MPN474. Moreover, loss of PrkC affects not only the phosphorylation state of the cytadherence proteins but also their intracellular accumulation. However, the expression of the corresponding genes was not affected by PrkC, suggesting that PrkC-dependent phosphorylation results in stabilization of the cytadherence proteins. The HMW proteins and P1 are part of the so-called terminal organelle of M. pneumoniae that is involved in gliding motility, cell division, and adhesion to host epithelial tissues. Our observations suggest that the posttranslational modification of cytadherence proteins by PrkC is essential for the development and function of the M. pneumoniae terminal organelle.
منابع مشابه
Protein kinase/phosphatase function correlates with gliding motility in Mycoplasma pneumoniae.
Mycoplasma pneumoniae exhibits a novel form of gliding motility that is mediated by the terminal organelle, a differentiated polar structure. Given that genes known to be involved in gliding in other organisms are absent in M. pneumoniae, random transposon mutagenesis was employed to generate mutants with gliding-deficient phenotypes. Transposon insertions in the only annotated Ser/Thr protein ...
متن کاملStability and subcellular localization of cytadherence-associated protein P65 in Mycoplasma pneumoniae.
The surface protein P65 is a constituent of the Mycoplasma pneumoniae cytoskeleton and is present at reduced levels in mutants lacking the cytadherence accessory protein HMW2. Pulse-chase studies demonstrated that P65 is subject to accelerated turnover in the absence of HMW2. P65 was also less abundant in noncytadhering mutants lacking HMW1 or P30 but was present at wild-type levels in mutants ...
متن کاملCharacterization of a Mycoplasma pneumoniae hmw3 mutant: implications for attachment organelle assembly.
The proteins required for adherence of the pathogen Mycoplasma pneumoniae to host respiratory epithelial cells are localized to a polar structure, the attachment organelle. A number of these proteins have been characterized functionally by analysis of noncytadhering mutants, and many are components of the mycoplasma cytoskeleton. Mutations in some cytadherence-associated proteins have pleiotrop...
متن کاملDomain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility.
The cell wall-less prokaryote Mycoplasma pneumoniae causes bronchitis and atypical pneumonia in humans. Mycoplasma attachment and gliding motility are required for colonization of the respiratory epithelium and are mediated largely by a differentiated terminal organelle. P30 is a membrane protein at the distal end of the terminal organelle and is required for cytadherence and gliding motility, ...
متن کاملBiological effects of anti-lipid and anti-protein monoclonal antibodies on Mycoplasma pneumoniae.
Monoclonal antibodies directed against Mycoplasma pneumoniae surface components were examined for their ability to block mycoplasma attachment to chicken erythrocytes. Purified preparations of antibodies which recognize the major mycoplasma ligand mediating cytadherence (protein P1, 165 kilodaltons) inhibited attachment by more than 85% of the control values. Monoclonal antibodies reactive with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 78 1 شماره
صفحات -
تاریخ انتشار 2010